Colorado River Lower Basin Drought Contingency Planning Update

Governor's Drought Interagency Coordinating Group

Thomas Buschatzke
Director
Arizona Department of Water Resources
May 9, 2017

Lake Powell and Lake Mead Coordinated Operations

Water Budget at Lake Mead

- Inflow = 9.0 maf (release from Powell + side inflows)
- Outflow = -9.6 maf (AZ, CA, NV, and Mexico delivery + downstream regulation and gains/losses)
- Mead evaporation losses = 0.6 maf
- Balance = -1.2 maf

Given basic apportionments in the Lower Basin, the allotment to Mexico, and an 8.23 maf release from Lake Powell, Lake Mead storage declines about 12 feet each year

RECLAMATION

Observed Hydrology & "Stress Test"

Natural Flow at Lee Ferry (1906 - 2013)

Probabilities of Lower Colorado River Basin Shortage

Source: US Bureau of Reclamation Results from the January 2017 CRSS / MTOM model run

	2017	2018	2019	2020	2021
Probability of any level of shortage (Mead ≤ 1,075 ft.)	0	34	30	29	33
1 st level shortage (Mead ≤ 1,075 and ≥1,050 ft)	0	34	30	27	25
2 nd level shortage (Mead <1,050 and ≥1,025 ft)	0	0	<1	1	7
3 rd level shortage (Mead <1,025)	0	0	0	<1	1

U.S. Bureau of Reclamation CRSS Model Run – April 2017

	2018	2019	2020	2021	2022
Probability of any level of shortage (Mead ≤ 1,075 ft)	0	31	32	34	39
1 st level shortage (Mead ≤ 1,075 and ≥1,050 ft)	0	31	31	26	27
2 nd level shortage (Mead <1,050 and ≥1,025 ft)	0	0	1	8	9
3 rd level shortage (Mead <1,025)	0	0	0	<1	3

2007 Interim Guidelines Shortage Impacts to Lower Basin

August 24-Month Study projections of January 1 Lake Mead elevations are used to determine operation of Lake Mead in upcoming year.

Lake Mead Elevation	Arizona Reduction	Nevada Reduction	California Reduction	Mexico Reduction
1075'	320,000 AF	13,000 AF	0	50,000 AF
1050'	400,000 AF	17,000 AF	0	70,000 AF
1025'	480,000 AF	20,000 AF	0	125 , 000 AF

Colorado River Lower Basin Drought Contingency Planning

Discussions between:

- Lower Basin States
- Department of the Interior
- Other contract holders

Goal of discussions:

- Restore risks to levels achieved in the 2007 Guidelines
- Conserve 1.5 3.0 MAF in Lake Mead over the next 5 years
- Reduce the risk of Lake Mead falling below critical elevations as was seen in the 2013 model projections

Lower Basin Drought Contingency Plan

- Avoid and protect against the potential for the elevation of Lake Mead to decline to elevations below 1,020 feet by collectively taking additional actions
- Includes a commitment by the U.S. to work to create or conserve Colorado River system water
- Recovery of additional reduction volumes would be allowed under certain conditions
- Incentivize ICS creation/storage
 - Agree that ICS may be withdrawn at lower Lake Mead elevations, similar to ICMA arrangements under Minute 319
 - Modification of the evaporative losses currently applied to ICS

Lower Basin Drought Contingency Plan

Lake Mead	AZ	AZ	AZ	NV	NV	NV	CA	CA	CA	505	TOTAL
Elevation	[2007]	[Plan]	TOTAL	[2007]	[Plan]	TOTAL	[2007]	[Plan]	TOTAL	BOR	TOTAL
1000 1075		1021/	1024	0	OV.	OV.				1001-	2001-
1090-1075	0	192K	192K	0	8K	8K	0	0	0	100k	300k
1075-1050	320K	192K	512K	13K	8K	21K	0	0	0	100k	633k
			552.1		3						
1050-1045	400K	192K	592K	17K	8K	25K	0	0	0	100k	717k
1045-1040	400K	240K	640K	17K	10K	27K	0	200K	200K	100k	967k
1040-1035	400K	240K	640K	17K	10K	27K	0	250K	250K	100k	1,017k
1040-1055	4001	24UK	04UK	1/1	IUK	2/1	U	230K	230K	1008	1,017K
1035-1030	400K	240K	640K	17K	10K	27K	0	300K	300K	100k	1,067k
1030-1025	400K	240K	640K	17K	10K	27K	0	350K	350K	100k	1,117k
4005	4001	24016	12016	2014	401/	2014		2501/	DEOK	4001	4 2001
<1025	480K	240K	720K	20K	10K	30K	0	350K	350K	100k	1,200k

Revised on 11/18/15 to include US and TOTAL reductions

Adaptive Conservation Framework

Goal: Reduce Probability of First Tier Lake Mead Shortage

Strategy

- Test buffer levels above 1,075 feet
- Set target elevations to create buffer for conservation measures
- Make projections of Lake Mead's end of year elevations using 24-Month study data
- Determine required conservation
- Develop system conservation program and have funding agreement in place
- Rolling 5-year plan
- Continue to monitor hydrologic conditions
- Adjust as necessary

Risk of Lake Mead Reaching Critically Low Elevations With LB DCP, DCP+, and Minute 32x

RECLAMATION

Lower Colorado River Basin Drought Contingency Discussions Next Steps

- Discussion regarding the voluntary reductions in Arizona and development of Arizona consensus
 - Reductions mostly impact Agricultural Pool, Arizona Water Banking Authority, other excess water users and NIA Pool
 - Goal to mitigate impacts to Agricultural Pool
- Communication & messaging (ongoing)
- Finalize DCP among Lower Basins States (Arizona, California & Nevada) & Reclamation
 - Include board actions
- Arizona Legislature
- Federal Legislation

Minute 32x

- Continues collaborative partnership with Mexico
- Creates package of benefits for Arizona
- Allows Mexico's water to be exchanged with United States users
- Allows Mexico to store water in Lake Mead
- H.J.R. 2002 signed by Governor Ducey on March 2nd

Questions?

Thomas Buschatzke Director

Phone: 602.771.8426

Email: tbuschatzke@azwater.gov

Website: www.azwater.gov

Twitter: @azwater

PROTECTING ARIZONA'S WATER SUPPLIES for ITS NEXT CENTURY